Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
OpenNano ; 10:100121.0, 2023.
Article in English | ScienceDirect | ID: covidwho-2238393

ABSTRACT

COVID-19, which was first spread in China in 2019 and consequently spread worldwide, is caused by the SARS-CoV-2. Today, various carbon-based nanomaterials such as graphene, graphene oxide, carbon dots, and carbon nanotubes have been explored for the specific detection and targeted inhibition/inactivation of SARS-CoV-2 due to their great surface chemical structures, easy to-functionalization, biocompatibility, and low toxicity. According to exclusive inherent properties, carbon-based nanomaterials are promising candidates for targeted antiviral drug delivery and the inhibitory effects against pathogenic viruses based on photothermal effects or reactive oxygen species (ROS) formation. These high-stability nanomaterials exhibited unique physicochemical properties, providing efficient nanoplatforms for optical and electrochemical sensing and diagnostic applications with high sensitivity and selectivity. Up to now, these materials have been used for the fabrication of diagnostic kits, different types of personal protective equipment (PPE) such as anti-viral masks, vaccines, self-cleaning surfaces, and other subjects. This review article explores the most recent developments in carbon-based nanomaterials' diagnostic and therapeutic potential towards SARS-CoV-2 detection and inhibition, different mechanisms, challenges and benefits of the carbon-based nanomaterials.

2.
OpenNano ; : 100104, 2022.
Article in English | ScienceDirect | ID: covidwho-2105672

ABSTRACT

Early diagnosis is essential for effective illness treatment, but traditional diagnostic approaches inevitably have major downsides. Recent advancements in nanoparticle-based biosensors have created new opportunities for accelerating diagnosis. High surface area, exceptional sensitivity, high specificity, and optical characteristics of metal and metal oxide nanoparticles have made it possible to detect a variety of health conditions and diseases immediately, including cancer, viral infection, biomarkers, and in-vivo imaging. Metal nanoparticles may be produced in a variety of ways, enabling the creation of innovative tools for chemical and biological sensing targets. The utilization of various metal nano-formulations, metal oxide nanoplatforms, and their composites in the early identification of illnesses is reported and summarized in this review. Additionally, the challenging corners in the use of metal oxide-based nano-scale diagnostic technologies in clinical applications are highlighted. The current work is believed to serve as a roadmap for in-depth research on inorganic nanomedicine, both in-vitro and in-vivo diagnosis of diseases and illnesses, especially pandemic infections like COVID-19.

3.
Biotechnol Rep (Amst) ; 34: e00730, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1894838

ABSTRACT

This review highlights using nanotechnology in increasing the bioavailability of AP (Apigenin) to enhance its therapeutic efficacy in breast cancer treatment. Breast cancer is one of the most leading causes of cancer death in women both in developed and developing countries. According to several epidemiological and clinical trial studies that indicate progestin-stimulated breast cancer in post-menopausal women; it is necessary to determine compounds to suppress or attenuate the tumor-promoting effects of progestins in breast cells. For this purpose, using the natural anti-progestins, including AP compared with the chemical ones could be significantly effective due to the lack of toxicities and contradiction effects. However, AP is categorized as a Class II drug of Biopharmaceutical Classification System with low solubility in water which limited its therapeutic effects. Therefore, nanotechnology due to the presentation of remarkable properties has overcome this limitation through enhanced the solubility and bioavailability of AP. In this regard, various nanocarriers such as nanocrystals, micelles, liposomes, PLGA, etc., have highlighted the significantly increased bioavailability and therapeutic efficacy of AP. Therefore, we will focus on the anticancer effects of AP in breast cancers, including involved mechanisms, the chemistry of AP and its bioavailability, finally different nanostructure systems to enhance the bioavailability of AP.

4.
Materials (Basel) ; 15(5)2022 Feb 27.
Article in English | MEDLINE | ID: covidwho-1742538

ABSTRACT

Several pieces of research have been done on transition metal nanoparticles and their nanocomplexes as research on their physical and chemical properties and their relationship to biological features are of great importance. Among all their biological properties, the antibacterial and antimicrobial are especially important due to their high use for human needs. In this article, we will discuss the different synthesis and modification methods of silver (Ag) and gold (Au) nanoparticles and their physicochemical properties. We will also review some state-of-art studies and find the best relationship between the nanoparticles' physicochemical properties and potential antimicrobial activity. The possible antimicrobial mechanism of these types of nanoparticles will be discussed in-depth as well.

5.
Sci Total Environ ; 825: 153902, 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1692893

ABSTRACT

Fast, efficient, and accurate detection of SARS-CoV-2 spike antigen is pivotal to control the spread and reduce the mortality of COVID-19. Nevertheless, the sensitivity of available nanobiosensors to detect recombinant SARS-CoV-2 spike antigen seems insufficient. As a proof-of-concept, MOF-5/CoNi2S4 is developed as a low-cost, safe, and bioactive hybrid nanostructure via the one-pot high-gravity protocol. Then, the porphyrin, H2TMP, was attached to the surface of the synthesized nanomaterial to increase the porosity for efficient detection of recombinant SARS-CoV-2 spike antigen. AFM results approved roughness in different ranges, including 0.54 to 0.74 µm and 0.78 to ≈0.80 µm, showing good physical interactions with the recombinant SARS-CoV-2 spike antigen. MTT assay was performed and compared to the conventional synthesis methods, including hydrothermal, solvothermal, and microwave-assisted methods. The synthesized nanodevices demonstrated above 88% relative cell viability after 24 h and even 48 h of treatment. Besides, the ability of the synthesized nanomaterials to detect the recombinant SARS-CoV-2 spike antigen was investigated, with a detection limit of 5 nM. The in-situ synthesized nanoplatforms exhibited low cytotoxicity, high biocompatibility, and appropriate tunability. The fabricated nanosystems seem promising for future surveys as potential platforms to be integrated into biosensors.


Subject(s)
Biosensing Techniques , COVID-19 , Metal-Organic Frameworks , Biosensing Techniques/methods , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
6.
JAMA Oncol ; 8(3): 420-444, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1664325

ABSTRACT

IMPORTANCE: The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. OBJECTIVE: To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. EVIDENCE REVIEW: The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). FINDINGS: In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. CONCLUSIONS AND RELEVANCE: The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.


Subject(s)
Global Burden of Disease , Neoplasms , Disability-Adjusted Life Years , Global Health , Humans , Incidence , Neoplasms/epidemiology , Prevalence , Quality-Adjusted Life Years , Risk Factors
7.
J Chem Technol Biotechnol ; 97(7): 1640-1654, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1650458

ABSTRACT

The application of quantum dots (QDs) for detecting and treating various types of coronaviruses is very promising, as their low toxicity and high surface performance make them superior among other nanomaterials; in conjugation with fluorescent probes they are promising semiconductor nanomaterials for the detection of various cellular processes and viral infections. In view of the successful results for inhibiting SARS-CoV-2, functional QDs could serve eminent role in the growth of safe nanotherapy for the cure of viral infections in the near future; their large surface areas help bind numerous molecules post-synthetically. Functionalized QDs with high functionality, targeted selectivity, stability and less cytotoxicity can be employed for highly sensitive co-delivery and imaging/diagnosis. Besides, due to the importance of safety and toxicity issues, QDs prepared from plant sources (e.g. curcumin) are much more attractive, as they provide good biocompatibility and low toxicity. In this review, the recent developments pertaining to the diagnostic and inhibitory potentials of QDs against SARS-CoV-2 are deliberated including important challenges and future outlooks. © 2022 Society of Chemical Industry (SCI).

8.
ACS Appl Bio Mater ; 4(12): 8110-8128, 2021 12 20.
Article in English | MEDLINE | ID: covidwho-1597218

ABSTRACT

The design of advanced nanobiomaterials to improve analytical accuracy and therapeutic efficacy has become an important prerequisite for the development of innovative nanomedicines. Recently, phospholipid nanobiomaterials including 2-methacryloyloxyethyl phosphorylcholine (MPC) have attracted great attention with remarkable characteristics such as resistance to nonspecific protein adsorption and cell adhesion for various biomedical applications. Despite many recent reports, there is a lack of comprehensive review on the phospholipid nanobiomaterials from synthesis to diagnostic and therapeutic applications. Here, we review the synthesis and characterization of phospholipid nanobiomaterials focusing on MPC polymers and highlight their attractive potentials for applications in micro/nanofabricated fluidic devices, biosensors, lab-on-a-chip, drug delivery systems (DDSs), COVID-19 potential usages for early diagnosis and even treatment, and artificial extracellular matrix scaffolds for cellular engineering.


Subject(s)
Biocompatible Materials/chemistry , Drug Carriers/chemistry , Lab-On-A-Chip Devices , Nanostructures/chemistry , Phospholipids/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19/virology , Humans , Microscopy, Confocal , SARS-CoV-2/isolation & purification , COVID-19 Drug Treatment
9.
Biomolecules ; 11(11)2021 11 17.
Article in English | MEDLINE | ID: covidwho-1523862

ABSTRACT

Metal-organic frameworks (MOFs) have been widely used as porous nanomaterials for different applications ranging from industrial to biomedicals. An unpredictable one-pot method is introduced to synthesize NH2-MIL-53 assisted by high-gravity in a greener media for the first time. Then, porphyrins were deployed to adorn the surface of MOF to increase the sensitivity of the prepared nanocomposite to the genetic materials and in-situ cellular protein structures. The hydrogen bond formation between genetic domains and the porphyrin' nitrogen as well as the surface hydroxyl groups is equally probable and could be considered a milestone in chemical physics and physical chemistry for biomedical applications. In this context, the role of incorporating different forms of porphyrins, their relationship with the final surface morphology, and their drug/gene loading efficiency were investigated to provide a predictable pattern in regard to the previous works. The conceptual phenomenon was optimized to increase the interactions between the biomolecules and the substrate by reaching the limit of detection to 10 pM for the Anti-cas9 protein, 20 pM for the single-stranded DNA (ssDNA), below 10 pM for the single guide RNA (sgRNA) and also around 10 nM for recombinant SARS-CoV-2 spike antigen. Also, the MTT assay showed acceptable relative cell viability of more than 85% in most cases, even by increasing the dose of the prepared nanostructures.


Subject(s)
COVID-19/diagnosis , Metal-Organic Frameworks/chemistry , Porphyrins/chemistry , Animals , COVID-19 Testing , CRISPR-Cas Systems , DNA, Single-Stranded , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Hydrogen Bonding , Limit of Detection , Nanocomposites , Nanostructures , Nitrogen/chemistry , PC12 Cells , Porosity , RNA, Guide, Kinetoplastida , RNA, Viral/metabolism , Rats , SARS-CoV-2 , Sensitivity and Specificity , Surface Properties
10.
J Control Release ; 336: 354-374, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1281448

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in early 2020 soon led to the global pandemic of Coronavirus Disease 2019 (COVID-19). Since then, the clinical and scientific communities have been closely collaborating to develop effective strategies for controlling the ongoing pandemic. The game-changing fields of recent years, nanotechnology and nanomedicine have the potential to not only design new approaches, but also to improve existing methods for the fight against COVID-19. Nanomaterials can be used in the development of highly efficient, reusable personal protective equipment, and antiviral nano-coatings in public settings could prevent the spread of SARS-CoV-2. Smart nanocarriers have accelerated the design of several therapeutic, prophylactic, or immune-mediated approaches against COVID-19. Some nanovaccines have even entered Phase IΙ/IIΙ clinical trials. Several rapid and cost-effective COVID-19 diagnostic techniques have also been devised based on nanobiosensors, lab-on-a-chip systems, or nanopore technology. Here, we provide an overview of the emerging role of nanotechnology in the prevention, diagnosis, and treatment of COVID-19.


Subject(s)
COVID-19 , Humans , Immunization , Nanotechnology , Pandemics , SARS-CoV-2
11.
Int J Mol Sci ; 21(14)2020 Jul 20.
Article in English | MEDLINE | ID: covidwho-1190406

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 pandemic that has been spreading around the world since December 2019. More than 10 million affected cases and more than half a million deaths have been reported so far, while no vaccine is yet available as a treatment. Considering the global healthcare urgency, several techniques, including whole genome sequencing and computed tomography imaging have been employed for diagnosing infected people. Considerable efforts are also directed at detecting and preventing different modes of community transmission. Among them is the rapid detection of virus presence on different surfaces with which people may come in contact. Detection based on non-contact optical techniques is very helpful in managing the spread of the virus, and to aid in the disinfection of surfaces. Nanomaterial-based methods are proven suitable for rapid detection. Given the immense need for science led innovative solutions, this manuscript critically reviews recent literature to specifically illustrate nano-engineered effective and rapid solutions. In addition, all the different techniques are critically analyzed, compared, and contrasted to identify the most promising methods. Moreover, promising research ideas for high accuracy of detection in trace concentrations, via color change and light-sensitive nanostructures, to assist fingerprint techniques (to identify the virus at the contact surface of the gas and solid phase) are also presented.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Metal-Organic Frameworks/chemistry , Nanotechnology/methods , Pneumonia, Viral/diagnosis , Point-of-Care Systems , COVID-19 , Genome, Viral/genetics , Humans , Metal Nanoparticles/chemistry , Pandemics , RNA, Viral/genetics , SARS-CoV-2 , Whole Genome Sequencing
12.
Sustain Chem Pharm ; 21: 100415, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1117694

ABSTRACT

The novel coronavirus pandemic has rapidly spread around the world since December 2019. Various techniques have been applied in identification of SARS-CoV-2 or COVID-19 infection including computed tomography imaging, whole genome sequencing, and molecular methods such as reverse transcription polymerase chain reaction (RT-PCR). This review article discusses the diagnostic methods currently being deployed for the SARS-CoV-2 identification including optical biosensors and point-of-care diagnostics that are on the horizon. These innovative technologies may provide a more accurate, sensitive and rapid diagnosis of SARS-CoV-2 to manage the present novel coronavirus outbreak, and could be beneficial in preventing any future epidemics. Furthermore, the use of green synthesized nanomaterials in the optical biosensor devices could leads to sustainable and environmentally-friendly approaches for addressing this crisis.

SELECTION OF CITATIONS
SEARCH DETAIL